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Indivisibility of Kato’s Euler systems and Kurihara

numbers

By
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with an appendix by Alexandru Ghitza∗∗

Abstract

In this survey article, we discuss our recent work [KKS20], [KN20] on the numerical veri-

fication of the Iwasawa main conjecture for modular forms of weight two at good primes and

elliptic curves with potentially good reduction. The criterion is based on the Euler system

method and the equality of the main conjecture can be checked via the non-vanishing of Kuri-

hara numbers. We also discuss further arithmetic applications of Kurihara numbers to study

the structure of Selmer groups following the philosophy of refined Iwasawa theory à la Kuri-

hara. In the appendix by Alexandru Ghitza, the SageMath code for an effective computation

of Kurihara numbers is illustrated.

§ 1. Overview

The main goal of my talk at RIMS was to explain the following rough statement

(motto?) in detail.

The Iwasawa main conjecture for modular forms of weight two over the

cyclotomic Zp-extension of Q can be numerically checked, for example, via

SAGE (even when the work of Skinner–Urban [SU14] does not apply).
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Our approach is purely based on the theory of Euler and Kolyvagin systems [Rub00],

[MR04] arising from Kato’s zeta elements [Kat04].

The very starting point of this work would be the following fundamental picture à

la Mazur (for an elliptic curve E over Q in this overview)1.

(1.1)

special values of L-functions of E
OO

?BSD
EXTREMELY HARD

��

oo
explicit reciprocity law

via dual exponential
// Kato’s zeta elements

Kato, Kolyvagin

��
Kato’s Euler systems:

collections of cohomology classes
over abelian extensions of Q

Kolyvagin derivative
“+ε”?

����

Selmer groups
E(Q)

Kato’s Kolyvagin systems:
collections of cohomology classes

over Q

control via Poitou–Tateoo

In the philosophy of special values of L-functions, the L-values and the size of Selmer

groups are intimately related, and it is explicitly and precisely realized as the Birch and

Swinnerton-Dyer conjecture for elliptic curves and the Bloch–Kato conjecture for more

general motives. One way to attack these conjectures is to use Euler systems. In the

case of elliptic curves and modular forms, Kato’s zeta elements arising from Siegel units

play the central role. Usually, the theory of Euler systems yields an upper bound of

Selmer groups (if the Euler system is non-torsion) following the above picture. The main

reason we only get an upper bound is that it is unclear whether the Kolyvagin derivative

process is “surjective” or not. Such a surjectivity can be recognized as the p-indivisibility

of derived Euler systems. In the anticyclotomic case, Kolyvagin conjectured the p-

indivisibility of derived Heegner points and deduced the exact bound and the structure

of the Selmer group of an elliptic curve over an imaginary quadratic field satisfying the

Heegner condition from the indivisibility conjecture in [Kol91]. Kolyvagin’s conjecture is

proved by Wei Zhang [Zha14] using the relevant main conjecture (for the case violating

the Heegner condition). In the cyclotomic case, we refine the lower-right part of the

picture of Mazur as follows.

Kato’s Euler systems:
collections of cohomology classes

over abelian extensions of Q

Kolyvagin derivative
“+ε” ?

����

Kolyvagin derivative
// Kolyvagin derivatives of

Kato’s Euler systems

“+ε”
ss

“mod p reduction of” the dual exponential

��Kato’s Kolyvagin systems:
collections of cohomology classes

over Q
Kurihara numbers

In the language of Kolyvagin systems à la Mazur–Rubin [MR04], the indivisibility

1I remember I saw the picture from the video-recorded lecture of Mazur on the mechanism of
Kolyvagin systems at École d’été sur la conjecture de Birch et Swinnerton-Dyer, 2002, France.
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of derived Euler systems is formulated as the primitivity of the corresponding Kolyvagin

systems. If we understand the meaning of the “mod p reduction” of the dual exponential

map in the correct way, then the primitivity can be checked by nonvanishing of Kurihara

numbers. In order to define a suitable mod p reduction of the dual exponential map, we

compute the image of an integral local Galois cohomology under the dual exponential

map. In the weight two case, such a computation can be done by using the Tate local

duality and the geometry of modular abelian varieties.

It is not the end of the story of Kurihara numbers. In fact, the notion of Kurihara

numbers is observed by Kurihara in the completely different context, refined Iwasawa

theory. We will explain the applications of (generalized) Kurihara numbers to refined

Iwasawa theory at the end.

In §2, we review various Iwasawa main conjectures, modular symbols and p-adic

L-functions, and the known results on the Iwasawa main conjectures. In §3, we state the

main results of [KKS20] and [KN20]. In §4, we discuss the main idea of the proof and

possible generalizations. In §5, following Kurihara’s idea, we discuss Kolyvagin systems

of Gauss sum type and refined Iwasawa theory emphasizing how Kurihara numbers

are used. In Appendix A by Alexandru Ghitza, an effective computation of Kurihara

numbers is illustrated.

Part I

Iwasawa main conjectures

§ 2. Review of Iwasawa main conjectures

§ 2.1. The formulation of Iwasawa main conjectures

Let p be an odd prime, f =
∑
n≥1 an(f)qn ∈ S2(Γ1(N), ψ) a normalized new

cuspidal eigenform, and Qf the field generated by the Hecke eigenvalues of f over Q.

Assumption 2.1. Throughout this article, we assume that one of the following

conditions:

1. p does not divide N , or

2. p2 divides N , p > 7, ψ = 1 (the trivial character), and Qf = Q.

We fix embeddings ιp : Q ↪→ Qp and ι∞ : Q ↪→ C. Then we denote the completion

of Qf at the prime π induced from ιp by Qf,π. The ring of integers of Qf,π is denote

by Zf,π and Fπ := Zf,π/πZf,π.
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For any field F , denote by GF the absolute Galois group of F . Let ρf : GQ →
AutQf,π (Vf ) ' GL2(Qf,π) be the π-adic Galois representation attached to f in the sense

of Deligne (i.e. the cohomological convention). See [Kat04, §14.10] for the normalization.

Let Tf be a Galois stable Zf,π-lattice in Vf and denote by ρ the residual representa-

tion of ρf over F and by N(ρ) the (prime-to-p) conductor of ρ. Let Af := Vf/Tf be

the associated discrete Galois module. Let f =
∑
n≥1 an(f)qn be the dual modular

form to f where an(f) is the complex conjugate of an(f). The corresponding Galois

representation and the lattice are denoted by Vf and Tf .

Assumption 2.2. The image of ρ contains a conjugate of SL2(Fp).

Under Assumption 2.2, the choice of Tf does not affect any result in this paper.

Let Q∞ be the cyclotomic Zp-extension of Q and Qn the cyclic subextension of

degree pn of Q in Q∞. Let Λ = Zf,πJGal(Q∞/Q)K be the Iwasawa algebra. Let

j : Spec(Qn) → Spec(OQn [1/p]) be the natural map. We define the global Iwasawa

cohomology groups by

Hi := Hi
ét(Spec(OQn [1/p]), j∗Tf (1))

for i ≥ 0.

Theorem 2.3 (Kato). Under Assumption 2.2, the following statements hold.

1. H2 is a finitely generated torsion Λ-module.

2. H1 is free of rank one over Λ.

Let Σ be a finite set of places of Q containing the places dividing Np∞ and QΣ be

the maximal extension of Q unramified outside Σ. Then ρf factors through Gal(QΣ/Q).

It is well known that H1 ' lim←−n H1(QΣ/Qn, Tf (1)). See [Kur02, §6] and [Kob03, Propo-

sition 7.1.(i)] for detail.

We recall various Iwasawa main conjectures for Af (1) over the cyclotomic Zp-
extension of Q.

Conjecture 2.4 (Kato’s IMC without p-adic L-functions). Let zKato ∈ H1

be Kato’s zeta element. Then

charΛ

(
H1/ΛzKato

) ?
= charΛ

(
H2
)
.

It seems that the following form of the main conjecture is most famous and explicitly

shows the connection between the analytic information (“the package of the congruences

among twisted L-values” via p-adic L-functions) and the arithmetic information (“the
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growth behavior of arithmetic invariants” via the characteristic ideals of dual Selmer

groups over the Iwasawa algebra) of given (automorphic) motives.

In the good ordinary case, i.e. ap(f) is a π-adic unit, f admits a unit root α of

the Hecke polynomial X2− ap(f)X +ψ(p)p. Denote by fα the p-stabilization of f with

Up-eigenvalue α. Let Lp(Q∞, fα) be the p-adic L-function associated to fα à la Mazur–

Tate–Teitelbaum defined in (2.1). Under the good ordinary condition and Assumption

2.2, it is known that Lp(Q∞, fα) ∈ Λ.

Conjecture 2.5 (Mazur’s IMC). Suppose that f is good ordinary at p. Then

Sel(Q∞, Af (1)) is Λ-cotorsion and

(Lp(Q∞, fα))
?
= charΛ (Sel(Q∞, Af (1))∨)

as ideals of Λ.

When p divides ap(f), the situation becomes more complicated; for examples, the

Selmer group is never Λ-cotorsion and the p-adic L-function is p-adically unbounded.

When ap(f) = 0, Kobayashi [Kob03] and Pollack [Pol03] formulated ±-Selmer groups

and ±-p-adic L-functions, which behave well in the standard framework of Iwasawa

theory.

Conjecture 2.6 (Kobayashi’s ±-IMC). Suppose that ap(f) = 0 and ψ = 1.

Then (
L∓p (Q∞, f)

) ?
= charΛ

(
Sel±(Q∞, Af (1))∨

)
as ideals of Λ.

There is also the ]/[-variant of Kobayashi-Pollack’s ±-Iwasawa theory for the case

p | ap(f) and ap(f) 6= 0 by Sprung [Spr12].

It is known that these main conjectures are equivalent under the relevant setting.

Theorem 2.7 ( [Kat04, §17.13], [Kob03, Theorem 7.4]).

1. If ap(f) is a π-adic unit, then Conjecture 2.4 is equivalent to Conjecture 2.5.

2. If ap(f) = 0 and ψ = 1, then Conjecture 2.4 is equivalent to Conjecture 2.6.

§ 2.2. Modular symbols, Mazur–Tate elements, and p-adic L-functions

For
a

n
∈ Q, we define

[a
n

]+
f

:=
1

2 · Ω+
f

(∫ a/n

i∞
f(z)dz +

∫ −a/n
i∞

f(z)dz

)
∈ Zf,π
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where

Ω+
f is

{
an integral canonical period of f when p - N , or

the Néron period of E when f corresponds to an elliptic curve E and p2 | N .

Note that the existence of integral canonical periods follows from Assumption 2.2. The

mod p reduction of
[a
n

]+
f

is denoted by
[a
n

]+
f
∈ Fπ . Following [Kur14b, §1.1], we define

Mazur–Tate element at Q(µn) by

θ̃Q(µn) :=
∑

a∈(Z/nZ)×

[a
n

]+
f
· σa ∈ Zf,π[Gal(Q(µn)/Q)],

and, for general K ⊆ Q(µn), following Kurihara, θ̃K is defined by the image of θ̃Q(µn)

in Zf,π[Gal(K/Q)] under the natural projection. See [Kur02, §1], [Kur14b, §2.1] for

details.

Now we assume that ap(f) is a π-adic unit and (n, p) = 1. Following [Kur14b, §2.3],

we define the p-stabilized Mazur–Tate element by

ϑQ(µn) := (1− σp
α

)(1−
σ−1
p

α
)θ̃Q(µn), ϑQ(µnpr ) := 1

αr ·
(
θ̃Q(µnpr ) − 1

α · ν
(
θ̃Q(µnpr−1 )

))
for r ≥ 2 where σp ∈ Gal(Q(µn)/Q) corresponds to p ∈ (Z/nZ)× and ν is the norm

map. For general K ⊆ Q(µnpr ), Kurihara defines ϑK by the natural image of ϑQ(µnpr )

in Zf,π[Gal(K/Q)]. Then the sequence (ϑQr )r forms a projective system and the limit

defines the p-adic L-function

(2.1) Lp(Q∞, fα) := lim←−
r

ϑQr ∈ Λ.

§ 2.3. Former results

Without a doubt, the following result of Kato using his Euler systems is the most

important to us and this is the statement we want to optimize.

Theorem 2.8 (Kato [Kat04]). Suppose that Assumption 2.2 holds. Then

charΛ

(
H1/ΛzKato

)
⊆ charΛ

(
H2
)
.

Concerning the other inclusion of the main conjecture, the following results are

proved by completely different methods. We do not specify the precise conditions here.

Theorem 2.9 (Skinner–Urban [SU14], X. Wan [Wan15]). Suppose that As-

sumption 2.2 holds and ψ = 1. Assume that f is good ordinary at p.
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1. (Skinner–Urban) If there exists a prime ` such that ` exactly divides N(ρ), then

Conjecture 2.5 holds.

2. (X. Wan) If a real quadratic field with certain properties exists, then Conjecture 2.5

holds.

Recently, there have been a lot of progresses towards the non-ordinary case. How-

ever, these results are not fully refereed yet.

Remark. Suppose that Assumption 2.2 holds and ψ = 1.

1. (X. Wan [Wanb]) If f corresponds to an elliptic curve of square-free conductor and

ap(f) = 0, then Conjecture 2.6 holds.

2. (Sprung [Spr]) If f corresponds to an elliptic curve of square-free conductor and p

divides ap(f), then Conjecture 2.4 holds via the ]/[-Iwasawa theory.

3. (X. Wan [Wana]) If ap(f) is divisible by π and the level satisfies a certain assump-

tion, then Conjecture 2.4 holds.

4. (Castella–Çiperiani–Skinner–Sprung [CÇSS]) If ap(f) is divisible by π and the level

is square-free, then Conjecture 2.4 holds.

§ 3. The statement of the main theorem

§ 3.1. Motivational examples

Question 3.1. Regarding the results on the equality of the main conjectures in

§2.3, we may ask the following questions.

1. How to remove the assumptions on the level?

2. How to deal with the ordinary and non-ordinary cases on equal footing like Theorem

2.8?

3. How about even more general reduction types?

We briefly recall the notion of Iwasawa invariants. Any finitely generated torsion

Λ-module M is pseudo-isomorphic to⊕
i

Λ/πµi ⊕
⊕
j

Λ/f
aj
j

where fj is a distinguished polynomial in Λ ' Zf,πJXK. Then µ(M) :=
∑
i µi and

λ(M) :=
∑
j deg(f) · aj . For f ∈ Λ, we define µ(f) := µ(Λ/f) and λ(f) := λ(Λ/f).

We recall two examples from [KKS20] and [KN20].
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Example 3.2 (Elliptic curve of full-square conductor, [KKS20, §8]). Let

p = 7 and E1 the elliptic curve over Q defined by the Weierstrass equation

y2 = x3 − 4062871x− 3152083138.

Then we have N1 = 3364 = 22 · 292, 7 - a7(E1), a7(E1) 6≡ 1 (mod p), and E1[p] is

a surjective Galois representaion. Also, we have Tam(E1) = 1, µ(Lp(Q∞, E1)) = 0,

λ(Lp(Q∞, E1) = λX(Lp(Q∞, E1) = 2. Here, λX(Lp(Q∞, E1) is the number of zeros of

Lp(Q∞, E1) not of the form ζpn − 1 for any n. See [Pol03, §6.1] for detail. Since the

conductor is a full-square, [SU14] does not apply.

Example 3.3 (Elliptic curve with additive reduction, [KN20, §5]). Let p =

11 and E2 the elliptic curve over Q defined by the Weierstrass equation

y2 = x3 − 584551x− 172021102.

Then we have N2 = 56144 = 24 · 112 · 29 and observe that p2 divides N2, E2[p] is

surjective, 11 - Tam(E2/Q), 11 - 29− 1 with a29(E2) = 1, and #X(E2/Q)[11∞] = 121,

and rkZE2(Q) = 0. Since E2 has additive reduction at 11, any former result on the

equality of the main conjecture does not apply.

How can we verify the main conjecture for the above examples? In order to deal

with this question, we focus more on Kato’s theorem (Theorem 2.8) since it is insensitive

to the reduction type. Then when does Kato’s Euler system become “optimal” to make

Theorem 2.8 an equality?

§ 3.2. Main results

Definition 3.4. A prime ` is a Kolyvagin prime (for Tf∗(1)) if ` does not

divide Np, ` ≡ 1 (mod π), a`(f) ≡ `+ 1 (mod π), and ψ(`) ≡ 1 (mod π).

Remark. The notion of Kolyvagin primes is generalized and refined in §5.1.

Now we assume that n is a square-free product of Kolyvagin primes. Then we fix

a primitive root η` modulo ` for a prime ` dividing n. Then we define the discrete

logarithm logF`(a) ∈ Z/(` − 1)Z by (η`)
logF`

(a) ≡ a (mod `) and denote its mod p

reduction by logF`(a) ∈ Fp ↪→ Fπ.

Theorem 3.5 (K–Kim–Sun [KKS20], K–Nakamura [KN20]). Assume one

of the following statements:

(good) If p does not divide N , then ap(f) 6≡ 1 (mod π) and ap(f) 6≡ ψ(p) (mod π)
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(additive) If p2 divides N , then p > 7 and f corresponds to an elliptic curve E over Q with

potentially good reduction at p.

We also assume that

1. the image of ρ contains a conjugate of SL2(Fp) (Assumption 2.2),

2. for a prime q dividing N with q 6≡ ±1 (mod p), ordq N = ordq N(ρ), and

3. for a prime q dividing N with q ≡ ±1 (mod p), q2 divides N .

If

δ̃n :=
∑

a∈(Z/nZ)×

∏
`|n

logF`(a)

 · [a
n

]+
f
6= 0

in Fπ for some square-free product n of Kolyvagin primes, then

• the derived Kato’s Euler system does not vanish modulo π, and

• Kato’s IMC (Conjecture 2.4) holds.

Remark. The number δ̃n is called the Kurihara number at n. The number

itself is not well-defined, but its mod π non-vanishing question is well-defined. The

potentially good reduction assumption in the additive case is required to have a pseudo-

isomorphism between H2 and the fine Selmer group Sel0(Q∞, E[p∞])∨. Assumptions 2.

and 3. corresponds to the divisibility condition

p - Tam(f) ·
∏
q|Nsp

(q − 1) ·
∏
q|Nns

(q + 1)

where Tam(f) is the product of local Tamagawa ideals for f at bad primes, Nsp is the

product of split multiplicative primes (i.e. q‖N and aq(f) = 1), and Nns is the product

of non-split multiplicative primes (i.e. q‖N and aq(f) = −1).

Let us recall some corollaries of Theorem 3.5 due to [EPW06], [KN20], [GIP],

and [KLP].

Corollary 3.6. Suppose that all the assumptions of Theorem 3.5 holds.

1. In the good ordinary case, if we further assume µ = 0 (i.e. the p-adic L-function is

non-zero mod π), then the Iwasawa main conjecture holds for all members of Hida

family of the residual representation without any tame level assumption.

2. In the additive reduction case, even without the potential good reduction assump-

tion, the numerical criterion implies the p-part of the Birch and Swinnerton-Dyer

conjecture for E. In other words, we have

ordp (#X(E/Q)[p∞]) = ordp

(
L(E, 1)

Ω+
E

)
.
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3. In the good supersingular case, if we further assume µ± = 0 (i.e. the ±-p-adic L-

function is non-zero mod π), then the ±-main conjecture holds for modular forms

of weight two with ap = 0 without any tame level assumption.

Now we apply Theorem 3.5 to verify the main conjecture for elliptic curves appeared

in Example 3.2 and 3.3.

Ex. 3.2. For pair (E1, 7), we have

δ̃1289·1471 6= 0.

Thus, the main conjecture for (E1, 7) holds and, furthermore, since µ = 0, the main

conjecture holds for all members of the Hida family of E1[7].

Ex. 3.3. For pair (E2, 11), we have

δ̃397·859 6= 0.

Thus, the main conjecture for (E2, 11) holds. In addition, since j(E2) is 11-integral

and E2(Q) is finite, the 11-part of the BSD formula

ord11 (#X(E2/Q)[11∞]) = ord11

(
L(E2, 1)

Ω+
E2

)
= 2

holds.

§ 4. The main idea and possible generalizations

The main idea of proof is fairly simple and straightforward. The following impli-

cations show how it works.

δ̃n 6= 0 (mod π)

?
��

derived Kato’s Euler systems do not vanish mod π
i.e. Kato’s Kolyvagin system is primitive

[Büy11]
��

Kato’s Λ-adic Kolyvagin system is Λ-primitive

[MR04] + (potentially) good condition
��

Kato’s main conjecture holds.

Before giving an answer to the question mark in the above, we quickly review how the

latter two implications are obtained.
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§ 4.1. Application of Kolyvagin systems

Kolyvagin systems are the “rigidified” version of Kolyvagin derivatives of Euler

systems. We do not review the theory of Kolyvagin systems here. See [KKS20, §4] for

a summary and [MR04] for detail.

Let κ be the Kolyvagin system for Tf (1) associated to Kato’s Euler system and

κ∞ be the Λ-adic Kolyvagin system for Tf (1)⊗ Λ, which lifts κ.

A Kolyvagin system κ is primitive if κ does not vanish modulo π, i.e κn 6≡
0 (mod π) for some square-free product n of Kolyvagin primes.

A Λ-adic Kolyvagin system κ∞ is Λ-primitive if κ∞ does not vanish modulo any

height-one primes of Λ.

Proposition 4.1 (Büyükboduk [Büy11]). If κ is primitive, then κ∞ is Λ-

primitive.

Theorem 4.2 (Mazur–Rubin [MR04]). If H2 and the fine Selmer group are

pseudo-isomorphic over Λ and κ∞ is Λ-primitive, then Conjecture 2.4 holds.

§ 4.2. The integral lattice and Kurihara numbers

Consider the following diagram

(4.1)

H1(Q(µn), Tf (1))

Dn
��

c+Q(µn)_
��

H1(Q(µn), Tf (1))

mod π
��

exp∗◦locp
// S(f)⊗ Qf,π ⊗ Qp(µn)

〈ω∗
f
,−〉dR

��

Dnc
+
Q(µn)_

��

� // Dnexp∗
(

locpc
+
Q(µn)

)
_
��(

H1(Q(µn), Tf (1))/πH1(Q(µn), Tf (1))
)Gal(Q(µn)/Q)

_�

��

Qf,π ⊗ Qp(µn) 〈ω∗
f
, Dnexp∗

(
locpc

+
Q(µn)

)
〉dR

(
H1(Q(µn), Tf (1)/πTf (1))

)Gal(Q(µn)/Q)

res−1
��

H1(Q, Tf (1)/πTf (1))

[MR04, Appendix A]
�� ��

H1(Q, Tf (1)/πTf (1))⊗Gn κn (mod π)

where c+Q(µn) is the +-part of the integral Kato’s Euler system at Q(µn) as in [Kat04, Ex-

ample 13.3], Dn is the Kolyvagin derivative with respect to certain choices of generators

of Gal(Q(µ`)/Q) for ` dividing n (c.f. §5.3), S(f) is the Qf -vector space generated by

f as in [Kat04, §6.3], ω∗
f

is the dual “integral” basis to f with respect to the de Rham

pairing chosen by the mod p multiplicity one as in [KKS20, §5.5], res−1 is the inverse

of the restriction map in the Hochschild–Serre spectral sequence defined on the image
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of the Kolyvagin derivative classes as in [Rub00, §4.4], and [MR04, Appendix A] is the

“ + ε” in Diagram (1.1).

Remark.
�

As we emphasized, the Euler system here must be an integral Euler

system in order to consider the associated Kolyvagin system. See also [KN20, Appendix].

In order to have κn (mod π) 6= 0, it suffices to see Dnc
+
Q(µn) 6≡ 0 (mod π). This can

be checked by considering how

〈ω∗
f
, Dnexp∗

(
locpc

+
Q(µn)

)
〉dR

lies in the integral lattice

L = 〈ω∗
f
, exp∗

(
H1(Qp(µn), Tf (1))

)
〉dR ⊆ Qf,π ⊗Qp(µn).

By the Tate local duality, computing 〈ω∗
f
, exp∗

(
H1(Qp(µn), Tf (1))

)
〉dR is equivalent to

computing 〈log
(
J1(N)f,π(Qp(µn))

)
, ωf 〉dR where J1(N)f,π is the Qf,π-component of

the modular abelian variety of f . Then the computation reduces to two parts:

• the image of the formal group of J1(N)f,π(Qp(µn)) under the formal logarithm

map, and

• the image of J1(N)f,π(Fp(µn)) under the mod p reduction of the logarithm map.

This strategy is due to [Rub00, Proposition 3.5.1]. Note that here we use the geometry

of modular abelian varieties explicitly.

Using the interpolation property of modular symbols and the factorization of the

Gauss sum, it is not very difficult to show that 〈ω∗
f
, Dnexp∗

(
locpc

+
Q(µn)

)
〉dR ∈ L mod-

ulo πL becomes δ̃n. Thus, we have a proof of Theorem 3.5.

Remark. In general, if the variables are assigned values in the maximal ideal, the

power series giving the formal group law converges. In the additive reduction case, using

the explicit Weierstrass local model of elliptic curves, the maximal ideal can be extended

to the ring of integers. This observation is the key input in the additive reduction

case. We do not expect that this property easily generalizes to general modular abelian

varieties.

Remark. Here are some possible generalizations and questions.

1. Using the Fontaine–Laffaille theory, the main result for the good reduction case can

be generalized to modular forms of “low” weight.
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2. The generalization beyond the Fontaine–Laffaille range seems difficult. See [Wana,

Remark 3.36] on this issue.

3. The extension of the main results to Q(µp∞) from Q∞ also seems nontrivial since

the Teichmüller character is not crystalline.

4. It seems interesting and difficult to consider a similar problem for higher core rank

Euler and Kolyvagin systems since the integrality issue becomes much more delicate.

The first three issues are being investigated by the author.

Part II

Refined Iwasawa theory

§ 5. Further applications: refined Iwasawa theory à la Kurihara

Unfortunately, I had no time to discuss the relation of indivisibility of Kurihara

numbers and refined Iwasawa theory when I gave a talk at RIMS.

The notion of Kurihara numbers has more applications than establishing the main

conjecture. More precisely, it provides the information of the structure of Selmer groups,

not just their size. In order to explain this nature, the rest of this article is devoted

to explain Kolyvagin systems of Gauss sum type, which is developed by Kurihara, for

elliptic curves by summarizing the content of [Kur14b]. Especially, we emphasize how

Kurihara numbers appear and are used, but we do not go into detail. See also [Kur02],

[Kur03], [Kur12], and [Kur14a] for details of refined Iwasawa theory. We follow almost

same notation as in [Kur14b].

Let p be an odd prime and E an elliptic curve over Q of conductor N .

Assumption 5.1. In this section, we assume

1. p - 2 ·N · ap(E) · Tam(E) ·#Ẽ(Fp).

2. The representation GQ → GL2(Zp) arising from the action on the p-adic Tate

module Tap(E) is surjective (Assumption 2.2).

3. The µ-invariant of Sel(Q∞, E[p∞])∨ is zero. Thus, Sel(Q∞, E[p∞]) is a cofinitely

generated Zp-module.

Remark. Under Assumption 5.1.(2), it is expected that Assumption 5.1.(3) al-

ways holds. It is the famous µ = 0 conjecture of Greenberg ( [Gre99, Conjecture 1.11]).
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§ 5.1. Setting the stage

For an integer k > 0, let

Pgood := {` : ` is a prime, ` - Np},
P(k) := {` ∈ Pgood : ` ≡ 1 (mod pk)},

P(k)
0 := {` ∈ Pgood : ` ≡ 1 (mod pk),H0(F`, E[pk]) contains an element of order pk},

(P
′

0)(k) := {` ∈ Pgood : ` ≡ 1 (mod pk),H0(F`, E[pk]) = E[pk]}, and

P(k)
1 := {` ∈ Pgood : ` ≡ 1 (mod pk),H0(F`, E[pk]) ' Z/pkZ}.

Note that Gal(F`/F`) acts on E[pk] since ` - Np. Thus, we have

(P ′0)(k) ⊆ P(k)
0 , P(k)

1 ⊆ P(k)
0 , and (P ′0)(k) ∩ P(k)

1 = ∅.

Suppose that ` ∈ P(k)
1 . Since ` ≡ 1 (mod pk), we have an exact sequence of

GF` -modules

0 // Z/pkZ // E[pk] // Z/pkZ // 0

and the (arithmetic) Frobenius at ` acts on E[pk] by

(
1 1

0 1

)
for a suitable basis of E[pk].

Thus, H1(F`, E[pk]) ' Z/pkZ for ` ∈ P(k)
1 .

Let t ∈ E[pk] be an element of pk. We define

P(k)
0,t := {` ∈ Pgood : ` ≡ 1 (mod pk), t ∈ H0(F`, E[pk])},

P(k)
1,t := {` ∈ Pgood : ` ≡ 1 (mod pk),H0(F`, E[pk]) = (Z/pkZ)t}

so that P(k)
0 =

⋃
t

P(k)
0,t and P(k)

1 =
⋃
t

P(k)
1,t where t runs over all elements of order pk

in E[pk]. Under Assumption 5.1.(2), (P ′0)(k) and P(k)
1,t are infinite due to Chebotarev

density theorem.

Let K(p) be the set of number fields K such that K/Q is a finite abelian p-extension

and unramified at all primes dividing N . Suppose that K ∈ K(p). We define

(P
′

0)(k)(K) := {` ∈ Pgood : ` ≡ 1 (mod pk),H0(F`, E[pk]) = E[pk], ` splits completely in K/Q},

P(k)
1 (K) := {` ∈ Pgood : ` ≡ 1 (mod pk),H0(F`, E[pk]) ' Z/pkZ, ` splits completely in K/Q}.

Remark. These notions are generalized and refined versions of Kolyvagin primes

(Definition 3.4).

For a prime ` with ` - Np and a number field F , we have

H1(Fv, E[pk])

E(Fv)⊗ Z/pkZ
= H0(Fv, E[pk](−1))
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where v is a prime of F lying above ` and Fv is the residue field of v. We put

H2
` (F ) =

⊕
v|`

H0(Fv, E[pk](−1)).

For a prime ` ∈ P(k)
0 , we fix a prime ` of an algebraic closure Q lying above `. For

a number field F , write `F for the prime of F lying below `. We fix t` ∈ H0(F`, E[pk])

and define

t`,K = (t` ⊗ ζ⊗(−1)

pk
, 0, · · · , 0) ∈ H2

` (K).

where t` ⊗ ζ⊗(−1)

pk
is the component at `K .

Let K ∈ K(p) and K∞/K the cyclotomic Zp-extension, and Kn the n-th layer. Due

to Assumption 5.1.(3) (i.e. µ = 0), Sel(K∞, E[p∞])∨ is a finitely generated Zp-module;

thus, the corestriction map

cores : Sel(Km, E[pk])→ Sel(K,E[pk])

is the zero map for m >> 0. We take the minimal such m and K[1] := Km and

K[n] :=
(
K[n−1]

)
[1]

.

§ 5.2. Euler systems of Gauss sum type for elliptic curves

Let K ∈ K(p) and ` ∈ P(k)
0 (K[1]). By using the global duality theorem, we have an

exact sequence

Sel(`)(K[1], E[pk])
∂` // H2

` (K[1])
w` // Sel(K[1], E[pk])∨

where Sel(`)(K,E[pk]) is the `-imprimitive Selmer group.

Let ϑK[1]
∈ Zp[Gal(K[1]/Q)] be the p-stabilized Mazur–Tate element of E over K[1].

We recall the Stickelberger theorem for elliptic curves.

Theorem 5.2 ( [Kur14b, Theorem 7]). Let K be a finite abelian p-extension

and assume that any bad reduction prime for E is unramified in K/Q. Then

ϑK · Sel(K,E[p∞])∨ = 0.

Remark. The proof of Theorem 5.2 depends heavily on a generalization of Kato’s

Euler system divisibility. See [Kur14b, Theorem 6.(1)] for detail. In other words, the

construction of the Euler system of Gauss sum type for elliptic curves uses Kato’s Euler

system.

By Theorem 5.2, we know

w`
(
ϑK[1]

· t`,K[1]

)
= ϑK[1]

· w`
(
t`,K[1]

)
= 0.
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Thus, there exists an element g ∈ Sel(`)(K[1], E[pk]) such that ∂`(g) = ϑK[1]
· t`,K[1]

. We

define the Euler system of Gauss sum type by

g` = g
(K)
`,t`

:= coresK[1]/K (g) ∈ Sel(`)(K,E[pk]).

It is proved in [Kur14b] that the element g
(K)
`,t`

is independent of the choice of g.

§ 5.3. Kolyvagin derivatives and Kolyvagin systems of Gauss sum type

As we have already seen, for ` ∈ Pgood, we have a natural homomorphism

∂` : H1(K,E[pk])→ H2
` (K) =

⊕
v|`

H0(Fv, E[pk](−1)).

Now we further assume ` ∈ P(k)
1 (K). Let Q`(`) be the maximal p-subextension of

Q` in Q(µ`) and G` := Gal(Q`(`)/Q`). For each n ≥ 1, we fix a primitive pn-th root

of unity ζpn such that (ζpn)n ∈ Zp(1). By Kummer theory, we have an identification

G` ' µpn` . Denote by τ` ∈ G` the element corresponding to the fixed primitive pn` -th

root of unity ζpn` under the identification and n` = ordp(`− 1).

We define the map

(5.1) φ` : H1(K,E[pk])→ H2
` (K)

by the composition of the following maps involving the finite-to-singular map (cf. [MR04,

§1.2]):

H1(K,E[pk])
loc`→

⊕
v|`

H1(Kv, E[pk])
(a)
=
⊕
v|`

H1(Q`, E[pk])
(b)
=
⊕
v|`

(
H1(F`, E[pk])⊕H1

tr(Q`, E[pk])
)

(c)
�
⊕
v|`

H1(F`, E[pk]) =
⊕
v|`

E[pk]/(Frob` − 1)
Frob−1

` −1
→
'

⊕
v|`

E[pk]Frob`=1

=
⊕
v|`

H0(F`, E[pk]) = H2
` (K)(1)

(d)
= H2

` (K)

where loc` is the localization map at `, (a) comes from ` ∈ P(k)
1 (K), (b) is the decomposi-

tion as an abelian group, (c) is the projection to the first part, (d) comes from the choice

of p-power roots of unity, and H1
tr(Q`, E[pk]) := ker

(
H1(Q`, E[pk])→ H1(Q`(`), E[pk])

)
(cf. [MR04, Definition 1.1.6.(iv)]).

For a prime ` ∈ P(k)
1 (K), we identify G` = Gal(Q(`)/Q) and take a generator τ`

as before. Note that [Q(`) : Q] = pn` . We define the norm operator and the Kolyvagin

derivative operator by

Nm` :=
∑pn`−1
i=0 τ i` ∈ Z[G`] and D` :=

∑pn`−1
i=0 iτ i` ∈ Z[G`].
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Let N (k)
1 (K) be the set of squarefree products of primes in P(k)

1 (K) including

1. For n ∈ N (k)
1 (K), we put Gn = Gal(Q(n)/Q), Nmn =

∏
`|n Nm` ∈ Z[Gn], and

Dn =
∏
`|nD` ∈ Z[Gn].

Assume that ` ∈ (P ′0)(k)(K(n)[1]) and consider g
K(n)
`,t`

∈ Sel(`)(K(n), E[pk]). Then

it is well known that Dng
K(n)
`,t`

∈ Sel(n`)(K(n), E[pk])Gn . We define the Kolyvagin

derivative of Gauss sum type

κn,` = κKn,`,t` ∈ Sel(n`)(K,E[pk])

by the image of Dng
K(n)
`,t`

under the isomorphism via control theorem [Kur14b, Lemma

2, §3.3].

We say n ∈ N (k)
1 (K) is admissible if n admits a factorization

n = `1 · · · · · `r

such that `i+1 ∈ P(k)
1 (K(`1 · · · · · `i)) for all i = 1, · · · , r − 1.

We define δn ∈ Z/pkZ[Gal(K/Q)] by

(5.2) ϑK(n) ≡ δn ·
r∏
i=1

(1− τ`i) (mod pk, (τ`1 − 1)2, · · · , (τ`r − 1)2).

where ϑK(n) is the p-stabilized Mazur–Tate element for K(n). See [Kur14b, (25)].

Remark. This δn is a Gal(K/Q)-equivariant p-stabilized version of Kurihara

numbers. Note that the k = 1 is only considered when we define δ̃n in §3.2; how-

ever, it can be naturally generalized by considering ` ≡ 1 (mod pk) in Definition 3.4. If

K = Q, then δn ∈ Z/pkZ. The generalized Kurihara number δ̃n ∈ Z/pkZ is defined

by

θ̃Q(n) ≡ δ̃n ·
r∏
i=1

(τ`i − 1) (mod pk, (τ`1 − 1)2, · · · , (τ`r − 1)2)

where θ̃Q(n) is the Mazur–Tate element. It is easy to observe that

ordp(δ̃n) = ordp(δn).

See [Kur14b, (31) and (32) in §5.2]. Note that we tacitly make a relevant correspondence

between generators of Gal(Q(µ`)/Q) and Gal(Q(`)/Q) for ` dividing n.

Proposition 5.3 (Properties of Kolyvagin derivatives of Gauss sum type).

Let n ∈ N (k)
1 (K), m0 an integer such that every prime of Km0

dividing n is inert in

K∞/Km0
, and ` ∈ (P ′0)(k)(Km0+k). Then

1. κn,` ∈ Sel(n`)(K,E[pk]).
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2. ∂r(κn,`) = φr(κn/r,`) for any prime divisor r of n.

3. ∂`(κn,`) = δnt`,K .

4. If n is admissible, then φr(κn,`) = 0 for any prime divisor r of n.

We adjust Kolyvagin derivatives to obtain Kolyvagin systems “by replacing `”. The

adjustment is needed for the computation of higher Fitting ideals of Selmer groups.

For any square-free product n of primes, we define ε(n) to be the number of prime

divisors of n. Consider natural maps

wK :
⊕

`H2
` (K)→ Sel(K,E[pk])∨ and ∂K : H1(K,E[pk])→

⊕
`H2

` (K)

as in §5.2.

Assume that n` ∈ N (k)
1 (Kε(n`)). By [Kur14b, Lemma 3, §3.4], we can take `′ ∈

(P ′0)(k) such that

• ` ∈ (P ′0)(k)(K[ε(n`)](n)Km0+k) where m0 is as in Proposition 5.3.

• wK[ε(n`)]
(t`′,K[ε(n`)]

) = wK[ε(n`)]
(t`,K[ε(n`)]

).

• Let φ
K[ε(n`)]
r : H1(K[ε(n`)], E[pk]) → H2

r(K[ε(n`)]) be the map φr for K[ε(n`)] as in

(5.1). There is an element

b′ ∈ Sel(``
′)(K[ε(n`)], E[pk])

such that ∂K[ε(n`)]
(b′) = t`′,K[ε(n`)]

− t`,K[ε(n`)]
and φ

K[ε(n`)]
r (b′) = 0 for all r dividing

n.

We put b = coresK[ε(n`)]/K(b′). We define the Kolyvagin system of Gauss sum type

by

κn,` := κn,`′ − δn · b.

Note that this element is independent of the choice of `′ and b′. This is needed for

computation of higher Fitting ideals of Selmer groups.

Proposition 5.4 (Properties of Kolyvagin systems of Gauss sum type). Sup-

pose that n` ∈ N (k)
1 (K[ε(n`)]). Then

1. κn,` ∈ Sel(n`)(K,E[pk]).

2. ∂r(κn,`) = φr(κn/r,`) for any prime divisor r of n.

3. ∂`(κn,`) = δn · t`,K .

4. If n is admissible, then φrκn,` = 0 for any prime divisor r of n.
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5. If n` is admissible and n` ∈ N (k)
1 (K[ε(n`)]+1), then we have

φ`(κn,`) = δn · t`,K .

We omit the modified Kolyvagin system of Gauss sum type. See [Kur14b, §5.1] for

detail. The modification allows us to choose n` ∈ N (k)
1 (K); thus, is it useful for effective

computations.

§ 5.4. Applications to determine the structure of Selmer groups

We state the main result of [Kur14b] regarding the structure of Selmer groups.

Theorem 5.5 (Kurihara). Suppose that n = `1 · · · · · `a ∈ N (k)
1 (K[a+1]). As-

sume that n is admissible and

δn ∈
(
Z/pkZ[Gal(K/Q)]

)×
.

Then

1. Sel(m)(K,E[pk]) is a free module of rank a over Z/pkZ[Gal(K/Q)].

2. The Kolyvagin system of Gauss sum type
{
κn/`i,`i

}
1≤i≤a forms a basis of Sel(m)(K,E[pk]).

3. Let

A :=


δn/`1 φ`1(κn/`1`2,`2) · · · φ`1(κn/`1`a,`a)

φ`2(κn/`2`1,`1) δn/`2 · · · φ`2(κn/`2`a,`a)
...

...
...

...

φ`a(κn/`a`1,`1) φ`a(κn/`a`2,`2) · · · δn/`a

 ∈ Ma×a
(
Z/pkZ[Gal(K/Q)]

)

and fA :
(
Z/pkZ[Gal(K/Q)]

)⊕a → (
Z/pkZ[Gal(K/Q)]

)⊕a
be the linear map corre-

sponding to A. Then

Sel(K,E[pk])∨ ' coker(fA).

Remark. See [Kur14b, Remark 5, §4.2] for the relation between A and the orga-

nizing matrix in the sense of Mazur–Rubin [MR05].

§ 5.5. Higher Fitting ideals of Selmer groups

Another aspect of refined Iwasawa theory is to deal with higher Fitting ideals of

Selmer groups. We only record the following theorem [Kur14b, Corollary 1, §2.4] using

generalized Kurihara numbers due to the page limit.
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Theorem 5.6 (Kurihara). Let n be a square-free product of primes in P(k)
0

and ε(n) = r. Then

δn ∈ Fittr,Z/pkZ[Gal(Qm/Q)]

(
Sel(Qm, E[pk])∨

)
where Fittr,R(M) is the r-th Fitting ideal of M over R.

Remark. For the initial Fitting ideal, the same result even holds for the super-

singular case. See [KK19] for detail.
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§Appendix A. Effective computation of Kurihara numbers, by Alexandru

Ghitza

Recall the Kurihara numbers discussed in Section 3.2:

(Appendix A.1) δ̃n =
∑

a∈(Z/nZ)×

∏
`|n

logF`(a)

 · [a
n

]+
f
∈ Fp.

Here n is a squarefree product of Kolyvagin primes for a rational elliptic curve E, [ an ]+f
is the modular symbol corresponding to the newform f attached to E, logF`(a) is the

discrete logarithm of a with respect to a fixed choice of primitive root mod `, and ·
denotes reduction modulo p.

Whether δ̃n is zero or not in Fp is well-defined independently of the choices of

primitive roots. Our aim is to computationally decide this question of non-vanishing

in an efficient manner. We performed these computations in SageMath [Dev19], which
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provides functionality for all the necessary ingredients. The challenge was to use this

functionality while avoiding the overhead costs often associated with SageMath objects.

In particular, the following implementation decisions greatly reduced the amount of

time and memory required:

• Instead of using SageMath’s modular symbol object, we rely on ECModularSymbol,

which is a thin wrap of modular symbols from John Cremona’s highly optimized

eclib package [Cre19].

• Since the same discrete logarithm values are used many times in the computation,

we cache each value the first time we compute it.

Here is an example of results produced by the code. Consider the elliptic curve

128A1, that is

E : y2 = x3 + x2 + x+ 1.

One can check that p = 3 satisfies the required properties for E, and that the first

Kolyvagin primes for the pair (E, p) are S = {7, 37, 67, 73, 103}. We compute the

Kurihara numbers for all squarefree products of the primes in S and represent the

result as the graph

1 7

37

67

73

103

7 · 37

7 · 67

7 · 73

7 · 103

37 · 67

37 · 73

37 · 103

67 · 73

67 · 103

73 · 103

7 · 37 · 67

7 · 37 · 73

7 · 37 · 103

7 · 67 · 73

7 · 67 · 103

7 · 73 · 103

37 · 67 · 73

37 · 67 · 103

37 · 73 · 103

67 · 73 · 103

7 · 37 · 67 · 73

7 · 37 · 67 · 103

7 · 37 · 73 · 103

7 · 67 · 73 · 103

37 · 67 · 73 · 103

7 · 37 · 67 · 73 · 103
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The vertex representing a given Kurihara number is colored red if the number is

zero and blue otherwise. The vanishing of the Kurihara numbers illustrated by the red

vertices in the third and fifth columns of the graph follows from the functional equation.

See [Kur14b, Lemma 4 (Page 347)] for details.

The computation of the entire graph took about 14 minutes on a desktop computer.

The code is available at

https://github.com/aghitza/kurihara_numbers
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